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Abstract-Buoyancy driven flows in cold pure and saline water very commonly arise. The anomalous 
density behavior of cold water, for example, a density extremum at about 4°C in pure water at atmospheric 
pressure, commonly has very large effects on flow and transport. Resulting mechanisms have been studied 
for various geometries and conditions, primarily for laminar flow. This study assesses the stability and 
instability mechanisms of developing flows adjacent to a vertical surface subject to both uniform flux and 
isothermal bounding conditions, in pure water at two pressure levels. The specific condition treated is that 
in which the quiescent ambient medium is at the density extremum condition. It is found that even this 
relatively weak effect, the variation to a density extremum across the thermal layer in the fluid, has 
important effects on instability and disturbance growth downstream. However, the nature of the instabilities 
and their selective amplification are similar to those well known for more ordinary fluid conditions. The 
new results here are compared with recent measurements of disturbance behavior, with excellent agreement. 

1. INTRODUCTION 

THE PHENOMENA of instability, disturbance growth 
and transition in buoyancy induced boundary layers 
are very important in applications. They have been 
investigated analytically, numerically and exper- 
imentally. Most of the studies pertain to isothermal 
or uniform flux conditions at a vertical surface in air 
or water. Instability arises in a laminar flow when 
a balance of buoyancy, pressure and viscous forces 
contributes net energy to disturbances, causing their 
amplification as they are convected downstream. 

Such instability characteristics are modified if the 
fluid state is near the condition of a density extremum. 
This occurs in pure water at about 4°C at atmospheric 
pressure. The temperature at maximum density, 
t&p), is known to decrease both with increasing 
water salinity and pressure level. A wide range of 
temperature, salinity and pressure levels occurs both 
in terrestrial waters and in technological processes 
and these effects are often very important. 

Almost all past stability analyses have used the Bous- 
sinesq approximation. That is, the local density 
difference (p,-p) is approximated linearly in terms of 
temperature and/or concentration differences, (t - tJ 
and (s--s,). The respective volumetric coefficients of 
expansion are taken as constants. This approximation 
results in the local instantaneous buoyancy force, 
g(p,-p), becoming g/?,(t--t_,), for thermal effects 
alone, where trn is the temperature of the ambient. 

Analysis and calculation of instability then pro- 
ceeds from the force-momentum and energy 

equations, written in terms of local average flow quan- 
tities and disturbance effects on velocity, pressure, 
density and temperature. The equations are then line- 
arized in disturbance amplitude. Several other often 
reasonable approximations are also made. The results 
are a force-momentum and an energy equation, in 
terms of local disturbance amplitudes, superimposed 
on a steady boundary region base flow. For buoyant 
flows, these equations are coupled by the temperature 
disturbance buoyancy force in the force-momentum 
equation. 

Assuming the form of both the streamwise and 
temporal disturbance behavior, these equations have 
been solved for many kinds of vertical and inclined 
buoyancy driven and mixed convection flows. The 
matters of principal interest have been: the down- 
stream location of incipient instability, in terms usu- 
ally of local Grashof number ; the downstream growth 
rate of disturbance amplitude, beyond that location ; 
and the variation of disturbance amplitude across the 
boundary region. These all depend on the heating 
condition, on the geometry of the flow and on the 
Prandtl number. 

Many experiments have shown that such analysis 
and calculation frequently very accurately predict the 
actual instability and disturbance growth charac- 
teristics which result in the first local turbulence. This 
turbulence, in turn, initiates a downstream transition 
region to full turbulence. A thorough recent review of 
the status of this field is given in Ref. [ 11. This review 
also summarizes improved methods of formulation 
and analysis, as well as information from experiments 
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NOMENCLATURE 

A disturbance amplitude ratio, equation 

(21) 
b(x) and c(x) similarity functions 
B characteristic frequency for an 

isothermal surface condition 
B* characteristic frequency for a uniform 

flux surface condition 

BZ, B, constants 
c wave speed, m/s 

CP specific heat, J/kg “C 
d(x) temperature function, “C 
f = f(s) generalized stream function 

.f physical frequency 

9 gravitational force, m/s’ 

Gr, local Grashof number 
k thermal conductivity, W/m “C 
n power law exponent 
N power law coefficient 

P pressure, bar 
Pr Prandtl number 
q = q&p) exponent in the density equation 
q”(x) local surface heat flux, W/m* 

s salinity, %0 (ppt) 
S(q) disturbance temperature amplitude 

function 
t temperature, “C 

t’ disturbance temperature 

u, characteristic velocity, m/s 
u, L’ velocity components, m/s 

l/V’ disturbance velocity components 
x, y, z coordinates. 

Greek symbols 
a = c&p) temperature coefficient in the 

density equation, l/C 

a, disturbance amplification rate 

a, disturbance wave number 

BL thermal expansion coefficient, l/C 

P disturbance frequency 
6 boundary layer thickness 
1 wave length, m 
9 = r~(x, y) similarity variable 
V kinematic viscosity, m*/s 
p = p(t, s,p) density of water, kg/m3 
@ disturbance velocity amplitude 

function 

4 generalized temperature 
tj+ = $(x, y) stream function 
tj’ = $‘(x, y, r) disturbance stream function 
r time. 

Subscripts 
i imaginary part of eigenvalues and 

eigenfunctions 
il ice-liquid interface 
m extremum condition 
0 at the fluid-solid interface 
r reference, real part of eigenvalues and 

eigenfunctions 
co unstratified quiescent ambient 

medium. 

on the progression of turbulence production, the 
nature of the developing turbulence and the indicated 
predictive parameters which bound the transition 
region. 

The present results concern the instability and dis- 
turbance growth characteristic in vertical thermally 
driven flows in cold water. The buoyancy force may 
not then be generally approximated linearly, in terms 
of temperature. Figure 1 indicates the density vari- 
ation with temperature, p(t, s,p), at salinity levels of 
s = 0, 20 and 35 ppt, at a pressure of 1 bar, and also 
for s = 20 ppt, at 10 and 20 bars. Clearly, a linear 
approximation is not generally appropriate, over any 
considerable range of temperature. An even greater 
anomaly arises when the surface and ambient tem- 
peratures, t, and t,, span the extremum. This is most 

999.8 - 
apparent in relation to the bottom curve. Then a large 
buoyancy force reversal arises across the thermal 
boundary layer. This introduces additional mech- -8 -6 -4 -2 0 2 4 6 a 10 

anisms toward instability, arising from the tendencies tpc 

to bi-directional boundary region flow. FIG. 1. The density-temperature dependence at various s and 
Such tendencies, toward bi-directional and flow p, in kg me3. Both t, and tit are shown. 
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reversal effects, have had considerable attention, 
mostly in most recent years. The severity and occur- 
rence of changed flow patterns are sometimes best 
correlated in the following temperature parameter. 

R = Gn(hP)--tm 
to-t, 

This parameter places the imposed conditions, t, and 
t,, with respect to the extremum condition t,. Upflow 
arises for R < 0, R 2 l/2 is downflow. Local buoy- 
ancy force reversals arise across the range of 
0 < R < l/2. 

perature, t,, bounding conditions. The results first 
show the effect of the tendency to an extremum on 
initial instability. Then, detailed downstream dis- 
turbance growth characteristics are given and com- 
pared with those in ordinary fluids. For all calcu- 
lations, the ambient temperature, t,, is taken as t,. 
That is, R = 0. Finally, the uniform flux disturbance 
growth predictions are compared with the data in Ref. 
[l 11, concerning actual disturbance behavior. 

Given the importance of cold water flows, there 
have been many experiments and calculations to 
assess the transport arising under the conditions of the 
reduced level of buoyancy and the reversals implied in 
Fig. 1. A full summary of the results is given in Refs. 
[2] and [3], along with measured and calculated trans- 
port information for vertical plane flows. Studies [4] 
and [S] probe the nature of transport response in the 
region of buoyancy force reversal, 0 < R < l/2. These 
collective studies show that many complicated trans- 
port regimes arise. Some are not of boundary region 
form, as shown in Ref. [6]. With saline diffusion effects 
added, as in Refs. [7] and [8], a very large diversity of 
additional effects and regimes also arise. Under some 
conditions ordinary transition occurs. Under others, 
laminar and turbulent regions co-exist or develop 
independently in different regions. 

The following sections formulate the basic laminar 
flow, for both bounding conditions, then the dis- 
turbances. The instability equations are then given. 
The numerical procedure is then set forth and dis- 
turbance amplitudes and stability planes are given. 
The subsequent comparison with limited data shows 
very good agreement. 

2. THE BASIC BOUNDARY REGION FLOWS 

Very little is known about how some of these flows 
are actually generated and driven. This paper con- 
siders an early aspect of such flows, how laminar 
instability arises and progresses to disturbance ampli- 
fication downstream, in a vertical thermally driven 
flow. 

The density variations in Fig. 1 indicate that the 
rate of density changes are very small around the 
extremum. Therefore, it is necessary to calculate the 
density, p(t,s,p) from a very accurate equation of 
state. Past equations are very complicated. They 
would result in a very large number of circumstance- 
dependent parameters in the formulation. This led to 
the development, in Ref. [12], of a very much simpler 
yet very accurate relation. Using this relation, simi- 
larity solutions were found in Ref. [3], for two-dimen- 
sional boundary layer flows induced by the buoyancy 
effects of both thermal and saline diffusion. 

The two studies to date concerning instability, in 
external vertical flows, are those in Refs. [9] and [IO]. 
They concern an isothermal surface, at t,, in an 
unstratified quiescent ambient, at t,. In Ref. [9], the 
effects of a tendency toward a density extremum, on 
neutral stability, are determined. This includes the 
regimes in the regions R < 0 and R > l/2. Then, no 
buoyancy force reversal arises. It was shown that the 
evaluation of the buoyancy force, accurately account- 
ing for the tendency to a density extremum, results in 
enhanced downstream stability. 

This density relation will be used here, for both the 
uniform flux and isothermal vertical surface 
conditions, in an extensive ambient medium at 
t, = t,/s,p), that is, for R = 0. Buoyancy is assumed 
here to arise only from thermal transport. One 
additional parameter, q&p), arises. 

The boundary layer equations for two-dimensional 
plane flow are 

The experiments, in Ref. [lo], at R = 0,O. 1 and 0.4, 
entered the gap of buoyancy force reversal, 
0 < R < l/2, on each side. Downstream instability 
and processes early in transition were studied. The 
data indicated the same kind of selective amplification 
mechanism long known to be operative with ordinary 
fluid behavior. Transition again followed from such 
disturbances. Both disturbance growth and transition 
were delayed, by the reduced buoyancy force, as pre- 
dicted by calculations. 

au au 
-+-_=o 
ax ay 

p(.~+u$)=P$+Y(P,-P) (3) 

pc,(~;+v$)=k$, 

The following transformation is applied, in terms 
of a similarity variable ~(x, y), stream function 4(x, y), 
or f(q), and temperature function, C+(V), as follows : 

9 =Ye% VWY) = N4f(?) (54 

t-t, m = (qx) 
~ where d(x) = t, - t, . (Sb) 

The present study follows on these results. Detailed The buoyancy force gbrn-p) in equation (3) is 
instability calculations were made for both the uni- determined from the density relation given below, in 
form surface heat flux, q”, and uniform surface tem- which the only temperature effect is It - t,,J. This leads 
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to extremely important simplifications in analysis 

p(t,.~pI = ~rn(wW -~~~,~~lf~-~,(~~~~llq”~P’~. (61 

The f~ctjons P~~~,P), 4.~~ P>, ~~(~,p} ad &PI apply 
over a range of salinity, 0 to 40 ppt, at pressure levefs 
to 1000 bars, for the tem~rature range 0 to 20°C. 
This equation has an rms accuracy of 10.4 ppm over 
these ranges. Some typical values ofq(s,p) and a(s,p) 
are listed in Table I. 

For most flows of small physical extent, the effects 
of pressure on density may be neglected. Therefore, 
the pressure terms in equation (6) are taken to pertain 
only to the pressure levet. Then the density difference 

tir eo - ~1 becomes, 

Pm-P = P(t,,‘I;mrP)-P(t,.~rn,P) 

= P&IL -Li’*#q, (71 

where ~~(s~,~} = t,. Since pm = pm, the buoyancy 
force and flow are always up, for t, on either side of 
t L. 

Introducing the tra~sfo~ations (5) and the buoy- 
ancy force (7) into equations (2-4), the variations of 
b(x), c(x) and d(x) are determined to result in simi- 
larity. Then q is the similarity variable in the stream 
and tem~rature functions, f(n) and 4(q). The local 
Grashof number is conventionally defined as 
(~~3~v~)(~~A~), the unit Crashof number times an esti- 
mate of the units of buoyancy, &(&-- t,). The anal- 
ogous estimate here is a/6,--t,/*. With this choice, 
the transfo~ati~n, boundary region equations and 
boundary conditions, for an impervious surface, 
become 

Gr, = (gx3~vz)a(t~-t~)~ and G = 44a 

@aI 

c(x) = 4&(x) = G and to -t, = d(x) = Nx” 

@W 

f”‘+(3$qn)j”jr”(2+2qn)f’*+-4’ = 0 (8~) 

#;+Pu[(3 -kq?z)fljf -4nf’#] = 0 @d) 

1 -c#J(O) = &co> = s’(0) = f(0) = f’(c0) = 0, 
(84 

where Q, the characteristic bo~da~ region thickness, 

Table 1. Values of q(q) at several different pressure and 
salinity levels 

Pressure p Salinity s 
&P) (bars) (Ppt) da 

I.0 t t i4 
1 S829 to00 0 27.164x IO-& 
1.8364 

: 
25.25 10.417 x 10-S 

I .8632 35.0 9.381 x 1O-6 
1.8948 1 0 9.297 x 1O-6 

$ q = 1 represents a linear variation of density with tem- 
perature. Then, a = &, the thermal expansion coefiicient. 

6, and velocity, U,, are 

? = @$/4x, 6(x) = 4x/G and U,(X) = vG 2~4~. 

(9) 

The above similar sohrtion arises for any reasonable 
power law variation of t, - t, = d(x) = Nx”. For an 

isothermal surface condition, n = 0 and the equations 
and boundary conditions reduce to 

f”‘+3JS”-2f’2+#9 .zz 0 (94 

q-f- 3PrJ‘-# = 0 (9bI 

I-#{~) = &co) =f’(O> =f(O) =f’(co> = 0. 

(9c> 

For a uniform surface heat flux, n = 1/(4+q), and 
the momentum and energy equations and boundary 
conditions become 

1 -#(O) = #(co) = f’(0) = f(0) = /‘(co) = 0. 

U&I 

The tem~rature response N is 

N = (~~~“/~~I-Q’(O)])“““““~. 

3. THE INSTABILITY FORMULATION 

A linear stability analysis is employed. The base 
flow is assumed subject to the following two dimen- 
sional disturbers, in terms of the stream and tem- 
perature functions, V and t’. 

@(x, y, z) = ~~~~(~~ eitiix -fir) @la) 

t’(x,y, 2) =i (to - ~~~~(~)ej~~-~T). 0 lb1 

Both & and fi may be complex. Early stability inves- 
tigations chose B to be real and 8 complex. This for- 
mulation predicted the local temporal exponential 
growth of disturbances. More recent practice has 
instead considered CE complex, with B real. This for- 
mulation determines the spatial, or downstream, 
amplification rate. 

This is the actual mechanism in a developing 
boundary region flow and such results have been 
repeatedly found to be in excellent agreement with 
experimental results, for many different buoyancy 
driven flows. See the review in Ref. [I]. The real part 
of B, 8, = 27~12, is the wave number and -$ is the 
spatial (in X) amplification rate. The frequency f is 
related to /? as @ = 2nf. Both B and fi are generalized, 
as B = 016 and 8 = ~~iU=. 

The disturbance equations 
The instantaneous stream and tem~rature 

function, $ + I&’ and tf t’, are substituted into the 



Stability of vertical thermal buoyancy induced flows 1387 

complete time dependent flow equations. The usual 
approximations are applied and the higher order dis- 
turbance terms are neglected. The resulting dis- 
turbance equations, in similarity form, in terms of 
disturbance amplitude functions Q(q) and S(q), gener- 
alized as shown in equation (1 I), are 

x [W”’ -2czW-f-a4CD+q(q-l)rpQ-~ 

x cb’S+qcp+‘S] (12) 

The boundary conditions for a surface of relatively 
large thermal capacity are 

Q(O) = W(0) = S(0) = @(co) = CD’(W) = S(c0) = 0. 

(14) 

The above equations constitute a sixth order linear 
ordinary differential equation for the disturbance 
amplitude distributions 0(q) and S(q). They contain 
S(v) and d(q), the base flow quantities. The par- 
ameters are G, q and Pr and u and /3 are the eigen- 
values. The ratio fijar is the wave speed c. 

The effect of anomalous density variation is seen to 
appear both in the base flow, f and 4, as well as in 
the disturbance momentum equation (12). For tem- 
perature conditions very far away from the density 
extremum, where the Eoussinesq approximation is 
valid, q becomes equal to one. Then the above for- 
mulation reduces to the conventional one. 

The n~~ericQ~pr~cedure 
The above sixth order linear system was solved 

numerically, as in Ref. [ 131, writing the amplitudes Q, 
and S as 

@ = Q), +B*$+B,@, 

S = S,+B$2+B$J. 
(15) 

The subscripts 1, 2, and 3 correspond to the inviscid, 
the viscous uncoupled and the viscous coupled inte- 
grals. For the inviscid limit, the terms of O(G - ‘) may 
be neglected and the equations (12) and (13) reduce 
to 

(f’-C)(W-Lx%)-f”‘0 = 0 = (f’-c)S-C/Y@, 

where c = /Qc (16) 

For the remaining linearly independent integrals, the 
limiting equations for the viscous uncoupled and vis- 
cous coupled limits are respectively 

&G(f’-cc)@“-@“” = 0 

= icrPrG[(f’-c)S-$‘@I-S” (17) 
and 

iclG(f’-cc)@“-@“” -q(q- 1)C$‘-2@s-q~~-‘s, 

= 0 = iaPrGf(f’-c)S]-S”. (18) 

The asymptotic behavior of these integrals, as q + co, 
are exponentially decaying and are characterized as 

where 

CI? = (t~~-icaG)“~ 

and 

ti3 = [fm(nq+3)(q-1)Pr+(cr2-~colPrG)“2]. 

The co~espon~ng as~ptot~c behavior of the tem- 
perature disturbances is 

S, N iuPrG&@,j{a2-iwPrG 

Sz N iuPrG@Dz/(u2 - imPrG 

-k%+(w+3)Prf,12) 

(20) 

4. NEUTRAL STABILITY CONDITIONS AND 
DISTURBANCE GROWTH 

The above formulation may be used to develop a 
plane of neutral stability and disturbance growth, for 
any surface temperature condition d(x) and any set of 
values of Pr and q. The coordinate of such planes are 
conventionally p _ G. Two kinds of calculations are 
given here, for both the temperature and the flux 
surface conditions. The first is for Pr = 11.6 and 
q = 1.8948 and 1.5829. The first value of y is for pure 
water at 1 bar and the second is for pure water at 
1000 bar. An extremum would arise at 1000 bar in 
subcooled water. 

The other calculations, done for comparison, are 
for a linear dependence of density on temperature, as 
with the Boussinesq approximation. Then q = I. This 
applies at higher temperature levels and even at lower 
ones, for very small temperature differences t,--t,. 
This condition is recovered in the formulation here, 
in equations (12) and (13) for q = 1. For these cal- 
culations Pr was taken as 11.6, as for cold water, 
except for some comparisons, when Pr = 6.7 is used, 
as at ordinary tem~ratures. 

The tangential velocity, f’, and temperature dis- 
tributions, Cp, are also calculated. This permits 
interpretation of instability effects in terms of differing 
base flows. Disturbance amplitude distributions 
across the boundary region were also calculated at 
several downstream locations, various values of G, 
for comparison with each other and with the data 
reported in fl I], for the Aux surface condition. 

Neutral stability 
For the neutral curve, a, = 0 in equations (12) and 

(13). For a given value of G, a pair of eigenvalues is 
guessed, i.e. /II and tl,, and the six integrals cD1, m2, aJ, 
S,, S2 and S, are integrated separately across the 
boundary region. Using the boundary conditions 
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CD(O) = S(0) = 0, B2 and B3 are determined from equ- 
ation (15). The remaining boundary condition W(0) 
is satisfied, by adjusting the guessed values of /Ir and 
c(,, until W(0) is less than 10m4. Each convergence is 
a neutral point. The neutral curve is generated by 
obtaining eigenvalues /Ir and a,, over the range of G. 

Ampl$cation contours 
As a disturbance of a given frequency is convected 

downstream, from a position G, to G2, the amplitude 
ratio (AZ/A,) for the two locations is given by 

$=exp[-&c2xidG]=exp[A]. (21) 

The amplification contours, that is, the loci of 
downstream locations have common values of A, are 
determined from equation (21). Constant physical fre- 
quency paths amount to satisfying the following 
relations between /I and G, for n = 0 and n = l/(4 + q), 
respectively, 

2nf /jG”3 = - 
V 

and 

fiG(‘J+ 1)/b,+ 3) = Ff 

where 

Note that B* and B are constants for a given value of 
q, frequency f and q” or (t, - t,). 

To determine the A contours, for given values of 
q(s,p), Pr and n, the neutral curve is used as the 
starting point for a particular frequency path. The 
value of & and G at the neutral curve determine B, or 
B*, in equations (22) or (23). Then, choosing a value 
of G further downstream, equations (23) or (24) deter- 
mines /lr, along the same f path. The complex value 
of CI is guessed, and the calculation is similar to that 
carried out for the neutral curve. The values of CI, 
and cli are corrected to satisfy the boundary condition 
W(0) = 0, using the Cauchy-Riemann relations 
a@:(O)/&, = &I+(O)/&,, etc., until W(0) is sufficiently 
small. The steps of AC were typically 5. The values 
of A are given by equation (21), using the simple 
trapezoidal rule. This procedure is repeated for a 
sufficient number of physical frequency paths to deter- 
mine the constant A contours. An example is seen in 
Fig. 4, simultaneously for q = 1.8948 and 1.0. 

Disturbance projiles across the boundary region 
These are determined from equation (11). Since the 

disturbance equations are linear and homogeneous, 

absolute magnitudes of the disturbances may not be 
calculated. Therefore, the amplitude distributions are 
normalized by their maximum values across the 
boundary region, as follows : 

Uf (W2 + W’ lj2 

&ax -[ [(W’ + (@~)'1,,, 1 
(24) 

VI 

[ 

(@r)’ + m)’ 1 
112 -= ~~EZX Iv+)” + m)‘lmx (25) 

I 

I,‘2 
(26) 

5. RESULTS 

The results for both the uniform flux and isothermal 
conditions are shown in Figs. 2-6 and 7-l 1, respect- 
ively. In each set, the steady-boundary region profiles, 
f’ and 4, are first plotted, for Pr = 11.6 and q = 1 .O, 
1.5829 and 1.8948. The heat transfer parameter 
[ - b’(O)] is listed in Table 2 for Pr = 11.6 and several 
values q(s,p). In Figs. 3 and 8, neutral stability curves 
are given. Figures 4 and 9 are the complete stability 
planes, in terms of downstream disturbance growth A 
and paths of constant physical frequency, f. The 
results for both q = 1 .O and 1.8948 are given on both 
figures, for comparison. Finally the normalized dis- 
turbance amplitude functions, or u’ and t’, are given 
in Figs. 5 and 6, and Figs. 10 and 11. 

Downstream ampkjication 
The calculated stability results give both eigen- 

values and eigenfunctions. The eigenvalues determine 
the stability plane. The neutral curve and the region 
of disturbance amplification are shown, with constant 
A contours. Most amplified disturbance frequencies 
are indicated. On the other hand, the eigenfunctions 
give distributions of disturbance amplitudes, as well 
as phase angles, across the boundary region. 

The uniformflux condition 
Figure 2 compares the velocity and temperature 

distributions for q = 1.0, 1.5829 and 1.8948, for 
Pr = 11.6. With increasing values of q, the velocity 
levels, as f’, decrease. However, f’ is the physical 

Table 2. Values of the heat transfer parameter [-d’(O)] for 
Pr = 11.6 

l-@(O)1 

Isothermal Uniform heat flux 

d% P) (n = 0) 

1.0 1.2200 1.3730 
1.5829 1.0971 1.2251 
1.8364 1.0557 1.1757 
1.8632 1.0517 1.1709 
1.8948 1.0470 1.1653 



Stability of vertical thermal buoyancy induced flows 1389 

Uniform Flux Surhcs 
Pr:it6 

(. q s LO 
2. q =1.5829 
3 q =1.8948 

17 
FIG. 2. Distributions of base flow velocity f’ and temperature 

I$ across the boundary region for a uniform flux surface. 

Uniform Flu Surfwe 

------q*i.o Pr*6.7 
----q’i.0 Pra 11.6 

-“-“-q’l.5829 PWl.6 

-q*l.8948 Prd6 

G 

FIG. 3. Neutral stability curves for a uniform flux surface. 

Uniform Fhr Surfocs 
______ qzl.0 Prz6.7 
-q+¶48 Pr=11.6 

aL 
---.- 

,2&-.-,--,-,. _(_. .._.r._,.. , _ 
405 b3l 9X nm 

G 

FIG. 4. Amplification rate contours for a uniform flux 
surface. Curves a, b, c and d represent B* = 0.731, 1.3203, 
1.512 and 1.6929, respectively. A Characteristic frequencies 
in transition observed experimentally by Qureshi and 

Gebhart (1981). 

Uniform Flux Surface 
-.-.-&9G 

- 6~350 
--____ Gz55G 

?T 
2 

FIG. 5. d/u& and phase distributions for a uniform flux 
surface along a path B* = 1.512, q = 1.8948. Experimental 
data by Qureshi and Gebhart (1981) l G = 447, x = 53.3 

cm;AG=469,x=78.6cm;+G=606,x=78.6cm. 

IJnifwmFluxSurface 

FIG. 6. f/t&. and phase distributions for a uniform flux 
surface along a path B* = 1.512, q = 1.8948. Experimental 
data by Qureshi and Gebhart l G = 447, x = 53.3 cm; A 

G=469,x=78.6cm;+G=606,x-78.6cm. 

.9 

7 

5 

.3 

0 4 5 

FIG. 7. Distributions ofbase flow velocity f’ and temperature 
4 across the boundary region for an isothermal surface, 

t, = t,. 
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FIG. 8. Neutral stability curves for an isothermal surface. 

velocity, normalized by a function of Grashof 
number, which in turn contains q. Even so, the density 
extremum weakens the buoyancy force and decreases 

the vigor of the flow. 
In Fig. 3 neutral curves are compared, for q = 1.0, 

1.5829 and 1.8948, for Pr = 11.6. The neutral curve 
for q = 1.0, Pr = 6.7, is also shown. At Pr = 11.6, the 
flow appears to be stabilized as the value of q 

increases. However, a comparison must be made in 
terms of physical quantities, such as the distance from 
the leading edge where a disturbance becomes neu- 
trally stable, xN. As an example, consider a surface 
dissipating 1000 W/m2 in ambient water at 20°C and 
q = 1 and at 4°C and q = 1.8948. The downstream 
locations of first instability are xN = 2 cm and 4.57 
cm, respectively. Thus, the density anomaly has sta- 
bilized the flow. 

The effects at different pressure levels may be esti- 
mated in the same way. At a given salinity, the value 
of q(s,p) decreases with increasing pressure. There- 
fore, xN increases slightly with pressure. However, at 
a given pressure, the variation of q&p) with salinity 
is not monotonic. 

The amplification contours for q = 1.8948, and for 

Isofhsrmaf Surface 

-----1'1.0 PFlf.6 

-q=f.6946 Pr=11.6 

G 

FIG. 9. Amplification rate contours for an isothermal surface. 
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FIG. 10. d/u&. and phase distributions for an isothermal 
surface along a path B = 0.36, q = 1.8948. 

Pr = 11.6, and for q = 1 and Pr = 6.7, are plotted in 
Fig. 4. For q = 1.8948 the flow is more stable in these 
coordinates initially. However, downstream, as G 
increases, the rate of disturbance amplification 
becomes much faster. That is, equal A contours are 
crossed more quickly. The first downstream appear- 
ance of temperature and velocity disturbances in the 
experimental study [l 1] were at values of G at which 
A = 610 on Fig. 4. For a flux level of 1000 W/m’ the 
downstream location x, for A = 6, are 44 cm and 39 
cm for q = 1.8948 and 1.0, respectively. For A = 9, 
the downstream location is the same. That is, the 
amplification has been the same. 

The paths of different physical frequencies in Figs. 
4(a-d) indicate that a particular band of frequency 
components are selectively amplified. The most ampli- 
fied frequency in this band is called the characteristic 
disturbance frequency. Gebhart and Mahajan [14] 
give the characteristic frequencies from the past cal- 
culations and experimental studies in water and air. 

Isothermal Surface 
-.-G=54D 
----G=550.0 

FIG. 11. t’/t&, and phase distributions for an isothermal 
surface along a path B = 0.36, q = 1.8948. 
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For water, at room temperature, Pr = 6.7, the result- 
ing frequency parameter is 0.675, for a uniform sur- 
face flux. Using the general formulation, equation 
(23), this value is B* = 0.731. This is based on the 
frequency path in Fig. 4 which passes through the 
minimum G values attained by the contours A = 6 
and 10, for q = 1.0. 

However, for q = 1.8948, one particular frequency 
path does not pass through these minimum G values. 
Instead the value of B* there increases with A. The 
disturbance frequencies measured in cold water, 
t, = 4°C by Qureshi and Gebhart [l l] are shown in 
Fig. 4. Over the range of A = 6 to 12, the value of B* 

at the minimum G location varies from 1.32 to 1.51. 
Thus, the experiments confirm both these stability 
calculations and this trend in downstream frequency 
modification. 

Thus, the value of the characteristic frequency B* 

changes from 0.731 to 1.512 as the ambient water 
temperature changes from 20 to 4°C. Since the defi- 
nition of B* as given by equation (23) contains the 
parameter q, it does not explicitly indicate the effect of 
ambient temperature level on the physical frequency. 
The actual effect is seen by calculating the frequency 
S for a surface dissipating 1000 W/m* in 20 and 4°C 
ambient water. The values are 0.2 Hz and about 0.12 
Hz. Thus, in addition to stabilizing the flow, the colder 
ambient medium decreases the value of the pre- 
dominant physical frequency. 

Calculated eigenfunctions are plotted in their nor- 
malized forms, for comparisons with data. Figure 5 
shows the distributions of r//u&, and the phase angle 
change, across the boundary region, along the path C 
in Fig. 4. The three distributions shown apply for 
three downstream locations G = 90, on the neutral 
curve, and at G = 350 and 550. The disturbance level 
at the outer edge of the velocity boundary layer 
increased downstream. The inner peak occurs around 
r] = 0.6. The disturbance temperature distributions, 

f)Kn.%X, along with their phase angle variation, are 
shown in Fig. 6, at G = 90 and 550. The major differ- 
ence is in phase distribution. The data from [l l] are 
also shown in Figs. 5 and 6. For both u’ and t’, 
excellent agreement is found near the surface. The 
disagreement for q > 1.5 in Fig. 5 arises both because 
the velocities are both low and comparable to the 
large horizontal entrainment effect there. 

The isothermal condition 
The base flow, stability and disturbance growth 

characteristics for this condition were also deter- 
mined. Figure 7 compares the base flow velocity and 
temperature distributions across the boundary layer 
for q = 1 .O, 1.5829 and 1.8948, for Pr = 1 I .6. Again 
the extremum effect is to decrease the buoyancy and 
hence the velocity levels. 

The neutral curves, for increasing values of q&p), 
in Fig. 8, again show that the flow is initially more 
stable. To maintain same At = t,- t, in cold water, 
less heat flux is required because of the low velocity 

level, compared with that at t, = 20°C. This stabilizes 
the flow. The effects of pressure and salinity levels on 
stability are the same as found for the uniform flux 
conditions. 

The amplification contours for q = 1.8948 and 1 .O, 
in Fig. 9, again indicate initial stabilization. However, 
downstream disturbance amplification rates become 
greater. For q = 1.8948, a single constant frequency 
path, B = 0.36, passes almost exactly through all of 
the minimum G values, across the whole range from 
6 to 14. Recall that, for uniform flux, the characteristic 
frequency varies downstream. The value, B = 0.36, 
also was found to apply for q = 1.5829, 1.8364 and 
1.8632. 

The value of B is 0.25 for flows arising in warm 
ambient, q = 1.0, see Ref. [14]. Again, to determine 
the effect of lowering the ambient temperature on the 
predominant physical frequency f is calculated from 
equation (22). For an isothermal surface maintained 
8°C above the ambient temperature, the predominant 
physical frequency is 0.3 Hz when t, = 20°C and 0.15 
Hz when t, = 4°C. This trend is consistent with that 
for a uniform flux condition. The distributions of 

u~I&.. and f/t’,,, are shown in Figs. 10 and 11, for 
different values of G along the path B = 0.36. The 
corresponding phase angle distributions are also 
shown. These results are very similar to those found 
for the flux condition. 

6. CONCLUSIONS 

The calculations for the flux and temperature con- 
ditions show that a tendency toward a density extre- 
mum has considerable effects both on initial laminar 
instability and on downstream disturbance growth. 
The effects for the two surface conditions are very 
similar. In cold water, the buoyancy is reduced and 
the flow is more stable. The downstream rate of dis- 
turbance growth is also less, in physical terms. 
However, the same kind of sharply selective dis- 
turbance amplification mechanisms arise. A narrow 
band of a general disturbance spectrum is still ampli- 
fied much more rapidly. The central or characteristic 
frequency again remains approximately constant 
downstream. However, its value is reduced almost 
by a factor of two compared with the predominant 
frequency found in warmer ambient medium. Data 
for both the characteristic frequency and the dis- 
turbance amplitudes, are in excellent agreement with 
the results of these calculations. 
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LA STABILITE DES ECOULEMENTS NATURELS THERMIQUES VERTICAUX 
DANS L’EAU PURE ET L’EAU SALEE 

R&t&-Des mouvements naturels se forment couramment dans l’eau pure et l’eau salee. L’anomalie de 
densitt de l’eau a 4°C et a la pression atmosphtrique a des effets importants sur le mouvement. On etudie 
les mkanismes pour differentes geometries et conditions, principalement pour l’bcoulement laminaire. 
Cette etude precise la stabilite des Bcoulements adjacents a une paroi verticale, soumise a un flux uniforme 
ou a temperature co’nstante, pour l’eau pure a deux niveaux de pression. La condition sptcitique trait&e 
est celle dun milieu ambiant au repos et pour la condition relativement faible, la variation de densite a 

travers la couche limite a des effets importants sur l'instabilitt et sur la croissance des perturbations en 

aval. Les risultats nouveaux obtenus sont compares avec des mesures recentes du comportement de 

perturbation et cela avec un accord excellent. 

DIE STABILITAT VON THERMISCHEN AUFTRIEBSSTRGMUNGEN IN KALTEM 
REINEM UND MIT SALZ VERSETZTEM WASSER 

Zusammenfassung-Stromungen aufgrund von Dichteunterschieden in reinem und salzigem kaltem Wasser 
treten hlufig auf. Die Dichteanomalie des Wassers mit dem Maximum bei etwa 4°C in reinem Wasser bei 
Umgebungsdruck beeinfluBt Stromungs- und Transportvorgange stark. Die daraus entstehenden Vorgange 
wurden fur verschiedene Anordnungen und Bedingungen untersucht, in erster Linie bei laminarer Stro- 
mung. Die vorliegende Studie untersucht Stabilitlts- und Instabilitltserscheinungen von Anlauf- 
stromungen entlang senkrechter Oberflachen in reinem Wasser bei zwei D&ken,. sowohl bei isothermer 
Randbedingung als such bei konstanter Wlrmestromdichte. Insbesondere wird jener Bereich untersucht, 
bei dem das ruhende Medium gerade das Dichtemaximum aufweist. Es stellt sich heraus, da8 selbst dieser 
relativ geringe Dichteunterschied in der thermischen Grenzschicht bis hin zum Dichtemaximum das 
Entstehen der Instabilitat und das Anwachsen von Storungen erheblich beeinflul3t. Die Art der Insta- 
bilitaten und ihre selektive Verstarkung ist allerdings lhnlich wie bei normaleren Fluidzustlnden. Die hier 
berichteten neuen Ergebnisse wurden mit kiirzlich durchgefiihrten Messungen des Stiirungsverhaltens 

verglichen, es wurde sehr gute fjbereinstimmung festgestellt. 

YCTOtiYMBOCTb MHjIYHMPYEMbIX IlOAaEMHOH CHJIOH BEPTMKAnbHblX 
fIOTOKOB B XOJIOflHOti rIMCTOfi I4 COJIEHOH BODE 

AHHoTauHn-_HHnyuspyeMbIe nonbeMHofi wnofi IIOTOKH B XononHoti wc~oti II ConeHOti 8oa.e npeuc-ra- 

a115noT o6bNHOe KaneHrie. AHOMaJIbHOe noaeaeHwe nnoTHocTIi xononsofi Bonbr, nanpebrep,ee sscrpe- 
MYM npn6nesnrenbno npn4”C B WCTOi? aone npki aTMOC‘$cpHOMI3aBneHH&,, o6bi’ino CllJlbHO anriser Ha 

xapaKrepTe~emia M nepeHoc.MeXaHri3MneAcTamr nonbeh4Hokckinbt wyqancnnna pa3nWIHblX reoMeT-- 

peti H rnaHHqHb,X yCJlOBt4i&rJlaBHblM o6pa3oh.r LUla JtaMHHapHOr0 nOTOKa. B LlaHHOfi pa6oTe iT.JII( UByX 

y,,OBHeir naB,,eHIts MCC,,eay,OTCa MeXaHH3Mbl yCTO&+t&,BOCTH A HeyCTOtiWBOCTH pa3BctEU‘DtWXCs B 

WCTOfi BOae Te',eHHti 86nrisn BepTHKanbHOi? nOBepXHOCTH LtJTa OLtHO,,O2ntOrO nOTOKa H W30TepMMqeC- 

KHX rnaHMWbtX yCJtOBHi%. PaCCMOTpeH CJTy'Iafi, KOraa nflOTHOCTb HenOLlB%KHOti OKpy~aEOUefi CpcLtbl 

IlBJIRcTCIl 3KCTpeMa.TbHOk Q6napyxreHo, 'IT0 Llaxe OTHOCHTcJIbHO cnadoe BO3paCTaHHe ITJIOTHOCTM 

nOnepeKTe"nOaOrOCnOR aXWnKOCTHaO3KCTpeManbHOrO3Ha'teHllaCHJtbHO BJtMaeT Ha pa3BNTHeyCTOk 

'IHBOCTM BOSMymeHHk B"H3 nOnOTOKy.OnHaKO Xa~KTepHeyCTOiiWaOCTefi II I1X H36HnaTeJbHOe ycWte- 

"MC KaWCTacHHOTaKHe)Ke,KaK II n,IH 06bPlHbIX yCJIOBHsX.CpaBHeHHe nOny'tcHHblX HOBblXpe3yJlbTalOB 

c nenaano nposenemibwui r83h4epeminM~ noKa3bmaeTrixnpeKpacHoecornacrie. 


