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Abstract—Buoyancy driven flows in cold pure and saline water very commonly arise. The anomalous
density behavior of cold water, for example, a density extremum at about 4°C in pure water at atmospheric
pressure, commonly has very large effects on flow and transport. Resulting mechanisms have been studied
for various geometries and conditions, primarily for laminar flow. This study assesses the stability and
instability mechanisms of developing flows adjacent to a vertical surface subject to both uniform flux and
isothermal bounding conditions, in pure water at two pressure levels. The specific condition treated is that
in which the quiescent ambient medium is at the density extremum condition. It is found that even this
relatively weak effect, the variation to a density extremum across the thermal layer in the fluid, has
important effects on instability and disturbance growth downstream. However, the nature of the instabilities
and their selective amplification are similar to those well known for more ordinary fluid conditions. The
new results here are compared with recent measurements of disturbance behavior, with excellent agreement.

1. INTRODUCTION

THE PHENOMENA of instability, disturbance growth
and transition in buoyancy induced boundary layers
are very important in applications. They have been
investigated analytically, numerically and exper-
imentally. Most of the studies pertain to isothermal
or uniform flux conditions at a vertical surface in air
or water. Instability arises in a laminar flow when
a balance of buoyancy, pressure and viscous forces
contributes net energy to disturbances, causing their
amplification as they are convected downstream.

Such instability characteristics are modified if the
fluid state is near the condition of a density extremum.
This occurs in pure water at about 4°C at atmospheric
pressure. The temperature at maximum density,
(s, p), is known to decrease both with increasing
water salinity and pressure level. A wide range of
temperature, salinity and pressure levels occurs both
in terrestrial waters and in technological processes
and these effects are often very important.

Almost all past stability analyses have used the Bous-
sinesq approximation. That is, the local density
difference (p, — p) is approximated linearly in terms of
temperature and/or concentration differences, (z—1,)
and (s—s,). The respective volumetric coefficients of
expansion are taken as constants. This approximation
results in the local instantaneous buoyancy force,
g(p.—p), becoming gf,(t—1t,), for thermal effects
alone, where ¢, is the temperature of the ambient.

Analysis and calculation of instability then pro-
ceeds from the force-momentum and energy

equations, written in terms of local average flow quan-
tities and disturbance effects on velocity, pressure,
density and temperature. The equations are then line-
arized in disturbance amplitude. Several other often
reasonable approximations are also made. The results
are a force-momentum and an energy equation, in
terms of local disturbance amplitudes, superimposed
on a steady boundary region base flow. For buoyant
flows, these equations are coupled by the temperature
disturbance buoyancy force in the force-momentum
equation.

Assuming the form of both the streamwise and
temporal disturbance behavior, these equations have
been solved for many kinds of vertical and inclined
buoyancy driven and mixed convection flows. The
matters of principal interest have been: the down-
stream location of incipient instability, in terms usu-
ally of local Grashof number ; the downstream growth
rate of disturbance amplitude, beyond that location ;
and the variation of disturbance amplitude across the
boundary region. These all depend on the heating
condition, on the geometry of the flow and on the
Prandtl number.

Many experiments have shown that such analysis
and calculation frequently very accurately predict the
actual instability and disturbance growth charac-
teristics which result in the first local turbulence. This
turbulence, in turn, initiates a downstream transition
region to full turbulence. A thorough recent review of
the status of this field is given in Ref. [1]. This review
also summarizes improved methods of formulation
and analysis, as well as information from experiments
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NOMENCLATURE
A disturbance amplitude ratio, equation Greek symbols
@n o = ofs,p) temperature coefficient in the
b(x) and c(x) similarity functions density equation, 1/°C
B characteristic frequency for an o disturbance amplification rate
isothermal surface condition o, disturbance wave number
B* characteristic frequency for a uniform B thermal expansion coefficient, 1/°C
flux surface condition B disturbance frequency
B,, B, constants o boundary layer thickness
¢ wave speed, m/s A wave length, m
[ specific heat, J/kg °C n =n(x,y) similarity variable
d(x) temperature function, °C v kinematic viscosity, m?/s
f=f() generalized stream function p = p(t,s,p) density of water, kg/m?
f physical frequency 0] disturbance velocity amplitude
g gravitational force, m/s’ function
Gr, local Grashof number ¢ generalized temperature
k thermal conductivity, W/m °C ¥ =y(x,y) stream function
n power law exponent V' =y'(x,y,7) disturbance stream function
N power law coefficient T time.
p pressure, bar
Pr Prandtl number
g = q(s,p) exponent in the density equation Subscripts
q”(x) local surface heat flux, W/m? 1 imaginary part of eigenvalues and
s salinity, %o (ppt) eigenfunctions
S(n) disturbance temperature amplitude il ice-liquid interface
function m extremum condition
t temperature, °C o at the fluid—solid interface
v disturbance temperature r reference, real part of eigenvalues and
U. characteristic velocity, m/s eigenfunctions
u,v velocity components, m/s 0 unstratified quiescent ambient
w'v"  disturbance velocity components medium.
x,y,z coordinates.
on the progression of turbulence production, the 10282} s
nature of the developing turbulence and the indicated W
predictive parameters which bound the transition 10076k pU.350)
region. L
The present results concern the instability and dis- werol T 10170
turbance growth characteristic in vertical thermally e g pL20201 1
driven flows in cold water. The buoyancy force may L~ § ]
not then be generally approximated linearly, in terms - ] 10165
of temperature. Figure 1 indicates the density vari- el w200\ ]
ation with temperature, p(t, s, p), at salinity levels of // oy \
s =0, 20 and 35 ppt, at a pressure of 1 bar, and also _ 1
for s = 20 ppt, at 10 and 20 bars. Clearly, a linear /,’// p120,4) 11080
approximation is not generally appropriate, over any i
considerable range of temperature. An even greater 1°°°°:/
anomaly arises when the surface and ambient tem- 9999
peratures, ¢, and ¢, span the extremum. This is most 9998l
apparent in relation to the bottom curve. Then a large L
buoyancy force reversal arises across the thermal 9997

boundary layer. This introduces additional mech-
anisms toward instability, arising from the tendencies
to bi-directional boundary region flow.

Such tendencies, toward bi-directional and flow

=t =+

-8 -6 4 -2 0 2 4 6 8 10
t%c
F1G. 1. The density-temperature dependence at various s and
p,in kg m—3. Both ¢, and ¢, are shown.
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reversal effects, have had considerable attention,
mostly in most recent years. The severity and occur-
rence of changed flow patterns are sometimes best
correlated in the following temperature parameter.

_tm(svp)—too
R= P (1)

This parameter places the imposed conditions, ¢, and
t ., with respect to the extremum condition ¢,,. Upflow
arises for R < 0, R > 1/2 is downflow. Local buoy-
ancy force reversals arise across the range of
0<R< 12

Given the importance of cold water flows, there
have been many experiments and calculations to
assess the transport arising under the conditions of the
reduced level of buoyancy and the reversals implied in
Fig. 1. A full summary of the results is given in Refs.
[2] and [3], along with measured and calculated trans-
port information for vertical plane flows. Studies [4]
and [5] probe the nature of transport response in the
region of buoyancy force reversal, 0 < R < 1/2. These
collective studies show that many complicated trans-
port regimes arise. Some are not of boundary region
form, as shown in Ref. [6]. With saline diffusion effects
added, as in Refs. [7] and [8], a very large diversity of
additional effects and regimes also arise. Under some
conditions ordinary transition occurs. Under others,
laminar and turbulent regions co-exist or develop
independently in different regions.

Very little is known about how some of these flows
are actually generated and driven. This paper con-
siders an early aspect of such flows, how laminar
instability arises and progresses to disturbance ampli-
fication downstream, in a vertical thermally driven
flow.

The two studies to date concerning instability, in
external vertical flows, are those in Refs. [9] and [10].
They concern an isothermal surface, at 7, in an
unstratified quiescent ambient, at ¢,. In Ref. [9], the
effects of a tendency toward a density extremum, on
neutral stability, are determined. This includes the
regimes in the regions R < 0 and R > 1/2. Then, no
buoyancy force reversal arises. It was shown that the
evaluation of the buoyancy force, accurately account-
ing for the tendency to a density extremum, results in
enhanced downstream stability.

The experiments, in Ref. [10}, at R = 0,0.1 and 0.4,
entered the gap of buoyancy force reversal,
0 < R < 1/2, on each side. Downstream instability
and processes early in transition were studied. The
data indicated the same kind of selective amplification
mechanism long known to be operative with ordinary
fluid behavior. Transition again followed from such
disturbances. Both disturbance growth and transition
were delayed, by the reduced buoyancy force, as pre-
dicted by calculations.

The present study follows on these results. Detailed
instability calculations were made for both the uni-
form surface heat flux, ¢"’, and uniform surface tem-
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perature, ¢,, bounding conditions. The results first
show the effect of the tendency to an extremum on
initial instability. Then, detailed downstream dis-
turbance growth characteristics are given and com-
pared with those in ordinary fluids. For all calcu-
lations, the ambient temperature, ¢, is taken as ¢,,.
That is, R = 0. Finally, the uniform flux disturbance
growth predictions are compared with the data in Ref.
[11], concerning actual disturbance behavior.

The following sections formulate the basic laminar
flow, for both bounding conditions, then the dis-
turbances. The instability equations are then given.
The numerical procedure is then set forth and dis-
turbance amplitudes and stability planes are given.
The subsequent comparison with limited data shows
very good agreement.

2. THE BASIC BOUNDARY REGION FLOWS

The density variations in Fig. 1 indicate that the
rate of density changes are very small around the
extremum. Therefore, it is necessary to calculate the
density, p(t,s,p) from a very accurate equation of
state. Past equations are very complicated. They
would result in a very large number of circumstance-
dependent parameters in the formulation. This led to
the development, in Ref. [12], of a very much simpler
yet very accurate relation. Using this relation, simi-
larity solutions were found in Ref. (3], for two-dimen-
sional boundary layer flows induced by the buoyancy
effects of both thermal and saline diffusion.

This density relation will be used here, for both the
uniform flux and isothermal vertical surface
conditions, in an extensive ambient medium at
te = tu/s,p), that is, for R = 0. Buoyancy is assumed
here to arise only from thermal transport. One
additional parameter, g(s, p), arises.

The boundary layer equations for two-dimensional
plane flow are

du Ov
a-i'@: 0 (2)
Ju ou 0%u
P(uaﬁ'l)E)—ﬂW‘Fy(Pm—P) 3
ot ot 0%t
pCp<ua+05>=kw. (4)

The following transformation is applied, in terms
of a similarity variable n(x, ), stream function ¢(x, y),
or f(n), and temperature function, ¢(n), as follows:

n=yb(x), Y(x,y)=ve(x)fn) (5a)
d(n) = % where d(x)=1t,—1,. (5b)

The buoyancy force g(p.,—p) in equation (3) is
determined from the density relation given below, in
which the only temperature effect is |t — ¢,|% This leads
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to extremely important simplifications in analysis
(1,3, p) = po (8, {1 — (s, Pt~ 1 (5. PIFCP}. (6)

The functions po(s, p), (s, ), tu(s, p) and (s, p) apply
over a range of salinity, 0 to 40 ppt, at pressure levels
to 1000 bars, for the temperature range 0 to 20°C.
This equation has an rms accuracy of 10.4 ppm over
these ranges. Some typical values of (s, p) and a(s, p)
are listed in Table 1.

For most flows of small physical extent, the effects
of pressure on density may be neglected. Therefore,
the pressure terms in equation (6) are taken to pertain
only to the pressure level. Then the density difference
(P — p) becomes,

Po—pP= P(tooaSao,P)“"P(t’Soosl’)
= pmaito_too{q“bq» (7)

where 1,(5.,p) = [, Since p, = py, the buoyancy
force and flow are always up, for £, on either side of
L.

Introducing the transformations (5) and the buoy-
ancy force (7) into equations (2-4), the variations of
b(x), ¢(x) and d(x) are determined to result in simi-
larity. Then # is the similarity variable in the stream
and temperature functions, () and ¢(n). The local
Grashof number is conventionally defined as
(gx3/v)(B.AL), the unit Grashof number times an esti-
mate of the units of buoyancy, §,(t,— ). The anal-
ogous estimate here is ajf,— 17 With this choice,
the transformation, boundary region equations and
boundary conditions, for an impervious surface,
become

Gr, = (gx*v)alty—1,) and G =44 /Gr./4
(82)

te = d(x) = NX"
(8b)
G+ 7~ Q2+2gn) f2+¢7 =0 (8¢c)
"+ PriB+qn)f¢ ~4nf'$]l =0  (8d)

1—¢(0) = ¢p(0) = f(0) = f(0) = f(c0) = 0,
(8¢)

where #, the characteristic boundary region thickness,

c(x)=4dxb(x)=G and ¢,

Table 1. Values of g(s,p) at several different pressure and

salinity levels
Pressure p Salinity s

g{s, p) (bars) (ppt) a{s.p)

1.0 ¥ T B
1.5829 1000 0 27.164x 10-¢
1.8364 1 25.25 10417 x 10~
1.8632 1 35.0 9.381 x 105
1.8948 1 0 9.297 x 106

+¢ = | represents a linear variation of density with tem-
perature. Then, o = §,, the thermal expansion coefficient.
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&, and velocity, U, are
5(x) = 4x/G and U/x)=vG/4x.
9

‘The above similar solution arises for any reasonable
power law variation of 1,— ¢, = d(x) = Nx". For an
isothermal surface condition, n = 0 and the equations
and boundary conditions reduce to

n = yG/ax,

F =248 =0 (9a)
¢"+3Prfd’ =0 (9b)

1—¢(0) = ¢(c0) = f'(0) = f(0) = f'(c0) = 0.
%¢)

For a uniform surface heat flux, n = 1/(4+¢), and
the momentum and energy equations and boundary
conditions become

e 3G+ L, 42+, -

T arg T g =0
B LT PO A
prepr sy g |=0 aom

1=6(0) = 9(0) = /'(0) = £(0) = f(20) = 0.

(10¢)

The temperature response N is

N = {/2vg" kgl — & @)} 4+2.

3. THE INSTABILITY FORMULATION

A linear stability analysis is employed. The base
flow is assumed subject to the following two dimen-
sional disturbances, in terms of the stream and tem-
perature functions, ¥ and ¢.

¥ (x, v, 1) = Ub®{(n)et® )
F 0,y 1) = (1, —1,)S() =59,

(11a)
(11b)

Both & and B may be complex. Early stability inves-
tigations chose & to be real and B complex. This for-
mulation predicted the local temporal exponential
growth of disturbances. More recent practice has
instead considered & complex, with } real. This for-
mulation determines the spatial, or downstream,
amplification rate.

This is the actual mechanism in a developing
boundary region flow and such results have been
repeatedly found to be in excellent agreement with
experimental results, for many different buoyancy
driven flows. See the review in Ref. [1}. The real part
of &, &, = 2n/A, is the wave number and —§& is the
spatial (in x) amplification rate. The frequency f is
related to f as f = 2nf. Both & and f§ are generalized,
as& =udand § = B5/U..

The disturbance equations
The instantaneous stream and temperature
function, ¥ +y’ and ¢+, are substituted into the
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complete time dependent flow equations. The usual
approximations are applied and the higher order dis-
turbance terms are neglected. The resulting dis-
turbance equations, in similarity form, in terms of
disturbance amplitude functions ®(x) and S(z), gener-
alized as shown in equation (11), are
’ ﬁ 1" 2 rre 1

(f =5 @R O =

x [@ =202 + o @+ g(g— D ?

x¢'S+q977 18] (12)

(5"—a?8).  (13)

,_B b —
(f ”E)S_‘M"iaPrG

The boundary conditions for a surface of relatively
large thermal capacity are

@(0) = @'(0) = S(0) = ®(c0) = ¥'(c0) = S(0) = 0.
(a4

The above equations constitute a sixth order linear
ordinary differential equation for the disturbance
amplitude distributions ®(n) and S(1). They contain
f(n) and ¢(n), the base flow quantities. The par-
ameters are G, g and Pr and « and B are the eigen-
values. The ratio §/x is the wave speed c.

The effect of anomalous density variation is seen to
appear both in the base flow, f and ¢, as well as in
the disturbance momentum equation (12). For tem-
perature conditions very far away from the density
extremum, where the Boussinesq approximation is
valid, ¢ becomes equal to one. Then the above for-
mulation reduces to the conventional one.

The numerical procedure

The above sixth order linear system was solved
numerically, as in Ref. [13], writing the amplitudes ®
and S as

d) = d)l +ng)2+B3d)3

S = Sl +B2S2+33S3.
The subscripts 1, 2, and 3 correspond to the inviscid,
the viscous uncoupled and the viscous coupled inte-
grals. For the inviscid limit, the terms of 0(G ~') may

be neglected and the equations (12} and (13) reduce
to

(f =)' =’ @)~ "D =0 = (f—c)S—¢'D,
c=Bla. (16)
For the remaining linearly independent integrals, the

limiting equations for the viscous uncoupled and vis-
cous coupled limits are respectively

I.aG(f’—C)(D"——(D”” =0
= iaPrG[(f —c)S—d'P}-S5"

(15)

where

amn

and
G (f =)@ =@ —q(q—1)¢* *¢'S—q¢*" 'S
=0 = wPrG[(f —0)5]-8". (18)
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The asymptotic behavior of these integrals, as § — oo,
are exponentially decaying and are characterized as

DO~er®, O,~e " and D, ~e ", (19)
where

o, = (a?—icaG)"?
and

o3 = [fo(ng+3g—DPr+ (o> —icaPrG)V?).

The corresponding asymptotic behavior of the tem-
perature disturbances is

S| ~ iaPrGe¢' @, f{a® —incPrG
— [+ (ng+3)Prf.]*}

S, ~ inPrGe'®,/{o? —incPrG
—[oa+ (ng+3)Prf..]*}

S, ~ (@i —ad) o] - )Ps/as.

(20)

4. NEUTRAL STABILITY CONDITIONS AND
DISTURBANCE GROWTH

The above formulation may be used to develop a
plane of neutral stability and disturbance growth, for
any surface temperature condition d(x) and any set of
values of Pr and ¢. The coordinate of such planes are
conventionally f ~ G. Twe kinds of calculations are
given here, for both the temperature and the flux
surface conditions. The first is for Pr=11.6 and
g = 1.8948 and 1.5829. The first value of ¢ is for pure
water at 1 bar and the second is for pure water at
1000 bar. An extremum would arise at 1000 bar in
subcooled water.

The other calculations, done for comparison, are
for a linear dependence of density on temperature, as
with the Boussinesq approximation. Then ¢ = 1. This
applies at higher temperature levels and even at lower
ones, for very small temperature differences ¢,—¢.
This condition is recovered in the formulation here,
in equations (12) and (13) for ¢ = 1. For these cal-
culations Pr was taken as 11.6, as for cold water,
except for some comparisons, when Pr = 6.7 is used,
as at ordinary temperatures.

The tangential velocity, 7, and temperature dis-
tributions, ¢, are also calculated. This permits
interpretation of instability effects in terms of differing
base flows. Disturbance amplitude distributions
across the boundary region were also calculated at
several downstream locations, various values of G,
for comparison with each other and with the data
reported in [11], for the flux surface condition.

Neutral stability

For the neutral curve, o; = 0 in equations (12) and
(13). For a given value of G, a pair of eigenvalues is
guessed, i.e. §, and a,, and the six integrals ®,, @,, O,
S, S, and 8, are integrated separately across the
boundary region. Using the boundary conditions
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@(0) = S(0) = 0, B, and B, are determined from equ-
ation (15). The remaining boundary condition ®'(0)
is satisfied, by adjusting the guessed values of 8, and
o,, until ®’(0) is less than 10~% Each convergence is
a neutral point. The neutral curve is generated by
obtaining eigenvalues f, and «,, over the range of G.

Amplification contours

As a disturbance of a given frequency is convected
downstream, from a position G, to G,, the amplitude
ratio (A,/A,) for the two locations is given by

42 ! ch dG] exp[d]. 1)
—=exp| —5—— ® = .
A4, P 3+nq ), P

The amplification contours, that is, the loci of
downstream locations have common values of 4, are
determined from equation (21). Constant physical fre-
quency paths amount to satisfying the following
relations between fand G, forn = Oand n = 1/(4 +¢),
respectively,

— g |-%3
| P I

and
BGa+DGa+D = g"_f
v
43 N9 —{g+4)/2(q+3)
x [———*g“(vs;” ) ] -5, (@)
where

4v2 q// 471 1/(g+9)
N=[g7(k[—¢'<0)1>] '

Note that B* and B are constants for a given value of
g, frequency f and ¢” or (¢,—1,).

To determine the A contours, for given values of
q(s,p), Pr and n, the neutral curve is used as the
starting point for a particular frequency path. The
value of §, and G at the neutral curve determine B, or
B*, in equations (22) or (23). Then, choosing a value
of G further downstream, equations (23) or (24) deter-
mines f,, along the same f path. The complex value
of o is guessed, and the calculation is similar to that
carried out for the neutral curve. The values of «,
and a, are corrected to satisfy the boundary condition
@®'(0) =0, using the Cauchy-Riemann relations
0D.(0)/0a, = 0®,(0)/0u;, etc., until ®'(0) is sufficiently
small. The steps of AG were typically 5. The values
of A are given by equation (21), using the simple
trapezoidal rule. This procedure is repeated for a
sufficient number of physical frequency paths to deter-
mine the constant A contours. An example is seen in
Fig. 4, simultaneously for ¢ = 1.8948 and 1.0.

Disturbance profiles across the boundary region
These are determined from equation (11). Since the
disturbance equations are linear and homogeneous,

Z. H. QuresH1 and B. GEBHART

absolute magnitudes of the disturbances may not be
calculated. Therefore, the amplitude distributions are
normalized by their maximum values across the
boundary region, as follows:

W [ @@t )"
o~ LT@)TF (mz)Z]maxJ @9
v _[ @r+@)? "
oo _[(<I>,)2+(<1>,-)21m] @3)
R YO B
l;nax L [(Sr)2 + (Si)Z]max :l . (26)

5. RESULTS

The results for both the uniform flux and isothermal
conditions are shown in Figs. 2-6 and 7-11, respect-
ively. In each set, the steady-boundary region profiles,
£’ and ¢, are first plotted, for Pr = 11.6 and ¢ = 1.0,
1.5829 and 1.8948. The heat transfer parameter
[—¢’(0)] is listed in Table 2 for Pr = 11.6 and several
values ¢(s, p). In Figs. 3 and 8, neutral stability curves
are given. Figures 4 and 9 are the complete stability
planes, in terms of downstream disturbance growth A4
and paths of constant physical frequency, f. The
results for both ¢ = 1.0 and 1.8948 are given on both
figures, for comparison. Finally the normalized dis-
turbance amplitude functions, or #’ and ¢, are given
in Figs. S and 6, and Figs. 10 and 11.

Downstream amplification

The calculated stability results give both eigen-
values and eigenfunctions. The eigenvalues determine
the stability plane. The neutral curve and the region
of disturbance amplification are shown, with constant
A contours. Most amplified disturbance frequencies
are indicated. On the other hand, the eigenfunctions
give distributions of disturbance amplitudes, as well
as phase angles, across the boundary region.

The uniform flux condition

Figure 2 compares the velocity and temperature
distributions for ¢ = 1.0, 1.5829 and 1.8948, for
Pr = 11.6. With increasing values of ¢, the velocity
levels, as f”, decrease. However, f’ is the physical

Table 2. Values of the heat transfer parameter [— ¢’(0)] for

Pr=11.6
{—¢'0)]
Isothermal Uniform heat flux

1
q(s,p) (n=0) (" - T+q)
1.0 1.2200 1.3730
1.5829 1.0971 1.2251
1.8364 1.0557 1.1757
1.8632 1.0517 1.1709
1.8948 1.0470 1.1653
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Fi1G. 8. Neutral stability curves for an isothermal surface.

velocity, normalized by a function of Grashof
number, which in turn contains ¢. Even so, the density
extremum weakens the buoyancy force and decreases
the vigor of the flow.

In Fig. 3 neutral curves are compared, for g = 1.0,
1.5829 and 1.8948, for Pr = 11.6. The neutral curve
for g = 1.0, Pr = 6.7, is also shown. At Pr = 11.6, the
flow appears to be stabilized as the value of ¢
increases. However, a comparison must be made in
terms of physical quantities, such as the distance from
the leading edge where a disturbance becomes neu-
trally stable, xy. As an example, consider a surface
dissipating 1000 W/m? in ambient water at 20°C and
g =1 and at 4°C and ¢ = 1.8948. The downstream
locations of first instability are xy = 2 cm and 4.57
cm, respectively. Thus, the density anomaly has sta-
bilized the flow.

The effects at different pressure levels may be esti-
mated in the same way. At a given salinity, the value
of g(s,p) decreases with increasing pressure. There-
fore, xy increases slightly with pressure. However, at
a given pressure, the variation of ¢(s, p) with salinity
is not monotonic.

The amplification contours for ¢ = 1.8948, and for

. Isothermol Surface
! N =10 Pr=116
~——q=18948 Pr=116

327’6’

Vs

0 200 400 600 "800 1000

F1G. 9. Amplification rate contours for an isothermal surface.
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F1G. 10. «'fuy,, and phase distributions for an isothermal
surface along a path B = 0.36, ¢ = 1.8948.

Pr=11.6, and for g = 1 and Pr = 6.7, are plotted in
Fig. 4. For g = 1.8948 the flow is more stable in these
coordinates initially. However, downstream, as G
increases, the rate of disturbance amplification
becomes much faster. That is, equal A4 contours are
crossed more quickly. The first downstream appear-
ance of temperature and velocity disturbances in the
experimental study [11] were at values of G at which
A = 6-10 on Fig. 4. For a flux level of 1000 W/m? the
downstream location x, for 4 = 6, are 44 cm and 39
cm for ¢ = 1.8948 and 1.0, respectively. For 4 =9,
the downstream location is the same. That is, the
amplification has been the same.

The paths of different physical frequencies in Figs.
4(a—d) indicate that a particular band of frequency
components are selectively amplified. The most ampli-
fied frequency in this band is called the characteristic
disturbance frequency. Gebhart and Mahajan [14]
give the characteristic frequencies from the past cal-
culations and experimental studies in water and air.
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FiG. 11. ¢/t,,, and phase distributions for an isothermal
surface along a path B = 0.36, g = 1.8948.



Stability of vertical thermal buoyancy induced flows

For water, at room temperature, Pr = 6.7, the result-
ing frequency parameter is 0.675, for a uniform sur-
face flux. Using the general formulation, equation
(23), this value is B* = 0.731. This is based on the
frequency path in Fig. 4 which passes through the
minimum G values attained by the contours 4 =6
and 10, for g = 1.0.

However, for ¢ = 1.8948, one particular frequency
path does not pass through these minimum G values.
Instead the value of B* there increases with 4. The
disturbance frequencies measured in cold water,
t,, = 4°C, by Qureshi and Gebhart [11] are shown in
Fig. 4. Over the range of 4 = 6 to 12, the value of B*
at the minimum G location varies from 1.32 to 1.51.
Thus, the experiments confirm both these stability
calculations and this trend in downstream frequency
modification.

Thus, the value of the characteristic frequency B*
changes from 0.731 to 1.512 as the ambient water
temperature changes from 20 to 4°C. Since the defi-
nition of B* as given by equation (23) contains the
parameter g, it does not explicitly indicate the effect of
ambient temperature level on the physical frequency.
The actual effect is seen by calculating the frequency
J for a surface dissipating 1000 W/m? in 20 and 4°C
ambient water. The values are 0.2 Hz and about 0.12
Hz. Thus, in addition to stabilizing the flow, the colder
ambient medium decreases the value of the pre-
dominant physical frequency.

Calculated eigenfunctions are plotted in their nor-
malized forms, for comparisons with data. Figure 5
shows the distributions of #'/u/,,, and the phase angle
change, across the boundary region, along the path C
in Fig. 4. The three distributions shown apply for
three downstream locations G = 90, on the neutral
curve, and at G = 350 and 550. The disturbance level
at the outer edge of the velocity boundary layer
increased downstream. The inner peak occurs around
n = 0.6. The disturbance temperature distributions,
t'/thax, along with their phase angle variation, are
shown in Fig. 6, at G = 90 and 550. The major differ-
ence is in phase distribution. The data from [11] are
also shown in Figs. 5 and 6. For both «’ and /7,
excellent agreement is found near the surface. The
disagreement for # > 1.5 in Fig. S arises both because
the velocities are both low and comparable to the
large horizontal entrainment effect there.

The isothermal condition

The base flow, stability and disturbance growth
characteristics for this condition were also deter-
mined. Figure 7 compares the base flow velocity and
temperature distributions across the boundary layer
for g = 1.0, 1.5829 and 1.8948, for Pr = 11.6. Again
the extremum effect is to decrease the buoyancy and
hence the velocity levels.

The neutral curves, for increasing values of ¢(s, p),
in Fig. 8, again show that the flow is initially more
stable. To maintain same At = ¢,—¢,, in cold water,
less heat flux is required because of the low velocity
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level, compared with that at ¢, = 20°C. This stabilizes
the flow. The effects of pressure and salinity levels on
stability are the same as found for the uniform flux
conditions.

The amplification contours for ¢ = 1.8948 and 1.0,
in Fig. 9, again indicate initial stabilization. However,
downstream disturbance amplification rates become
greater. For g = 1.8948, a single constant frequency
path, B = 0.36, passes almost exactly through all of
the minimum G values, across the whole range from
6 to 14. Recall that, for uniform flux, the characteristic
frequency varies downstream. The value, B = 0.36,
also was found to apply for ¢ = 1.5829, 1.8364 and
1.8632.

The value of B is 0.25 for flows arising in warm
ambient, g = 1.0, see Ref. [14]. Again, to determine
the effect of lowering the ambient temperature on the
predominant physical frequency f is calculated from
equation (22). For an isothermal surface maintained
8°C above the ambient temperature, the predominant
physical frequency is 0.3 Hz when ¢, = 20°C and 0.15
Hz when ¢, = 4°C. This trend is consistent with that
for a uniform flux condition. The distributions of
' [ty and ¢'/t,,,. are shown in Figs. 10 and 11, for
different values of G along the path B = 0.36. The
corresponding phase angle distributions are also
shown. These results are very similar to those found
for the flux condition.

6. CONCLUSIONS

The calculations for the flux and temperature con-
ditions show that a tendency toward a density extre-
mum has considerable effects both on initial laminar
instability and on downstream disturbance growth.
The effects for the two surface conditions are very
similar. In cold water, the buoyancy is reduced and
the flow is more stable. The downstream rate of dis-
turbance growth is also less, in physical terms.
However, the same kind of sharply selective dis-
turbance amplification mechanisms arise. A narrow
band of a general disturbance spectrum is still ampli-
fied much more rapidly. The central or characteristic
frequency again remains approximately constant
downstream. However, its value is reduced almost
by a factor of two compared with the predominant
frequency found in warmer ambient medium. Data
for both the characteristic frequency and the dis-
turbance amplitudes, are in excellent agreement with
the results of these calculations.
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LA STABILITE DES ECOULEMENTS NATURELS THERMIQUES VERTICAUX
DANS L’EAU PURE ET L’EAU SALEE

Résumé—Des mouvements naturels se forment couramment dans I’eau pure et I’eau salée. L’anomalie de
densité de I’eau a 4°C et a la pression atmosphérique a des effets importants sur le mouvement. On étudie
les mécanismes pour différentes géométries et conditions, principalement pour I'écoulement laminaire.
Cette étude précise la stabilité des écoulements adjacents a une paroi verticale, soumise & un flux uniforme
ou a température constante, pour I’eau pure a4 deux niveaux de pression. La condition spécifique traitée
est celle d’un milieu ambiant au repos et pour la condition relativement faible, la variation de densité a
travers la couche limite a des effets importants sur l'instabilité et sur la croissance des perturbations en
aval. Les résultats nouveaux obtenus sont comparés avec des mesures récentes du comportement de
perturbation et cela avec un accord excellent.

DIE STABILITAT VON THERMISCHEN AUFTRIEBSSTROMUNGEN IN KALTEM
REINEM UND MIT SALZ VERSETZTEM WASSER

Zusammenfassung—Stromungen aufgrund von Dichteunterschieden in reinem und salzigem kaltem Wasser
treten hiufig auf. Die Dichteanomalie des Wassers mit dem Maximum bei etwa 4°C in reinem Wasser bei
Umgebungsdruck beeinfluit Stromungs- und Transportvorginge stark. Die daraus entstehenden Vorgénge
wurden fir verschiedene Anordnungen und Bedingungen untersucht, in erster Linie bei laminarer Stro-
mung. Die vorliegende Studie untersucht Stabilitdts- und Instabilitdtserscheinungen von Anlauf-
stromungen entlang senkrechter Oberflichen in reinem Wasser bei zwei Driicken, sowohl bei isothermer
Randbedingung als auch bei konstanter Wirmestromdichte. Insbesondere wird jener Bereich untersucht,
bei dem das ruhende Medium gerade das Dichtemaximum aufweist. Es stellt sich heraus, daB selbst dieser
relativ geringe Dichteunterschied in der thermischen Grenzschicht bis hin zum Dichtemaximum das
Entstehen der Instabilitit und das Anwachsen von Stérungen erheblich beeinfluBt. Die Art der Insta-
bilititen und ihre selektive Verstarkung ist allerdings dhnlich wie bet normaleren Fluidzustinden. Die hier
berichteten neuen Ergebnisse wurden mit kiirzlich durchgefilhrten Messungen des Stdrungsverhaltens
verglichen, es wurde sehr gute Ubereinstimmung festgestellt.

YCTOWYUBROCTh UHAYLUUPYEMBIX MOJBEMHOM CUJIOM BEPTUKAJIBHbBIX
MOTOKOB B XOJOAHOW UUCTOW U COJIEHOM BOJE

Annorauna—HHuayuupyemele NoaIbeMHOM CHIIOM MOTOKH B XOJIOAHON YKMCTON M COJIEHON BOJAE npeiacTa-
BAAIOT OObIYHOE fIBJIEHHE. AHOMA1bHOE MOBEACHHE MIOTHOCTH XOJIOAHOHK BO/bl, HAMPUMEP, €€ IKCTpe-
MyM nipubiinzutesbHo npu 4°C B UCTOH Boae NpM aTMOCHEPHOM AaBJICHHH, OObIMHO CUJIBHO BJIMSET Ha
XxapaKTep TeYeHUs M NepeHoc. MexaHn3M JeiCTBUA TIOJALEMHOR CHIIbl H3YYACH 18 PA3JINYHbIX T€OMET-
pHit ¥ rpaHMYHBIX YCJIOBUiA, TIABHBIM 00pa3oM [ naMuMHapHoro notoka. B nawno# pabote nns asyx
ypOBHeil NaBJICHUA UCCIIEAYIOTCS MeXaHM3IMbl YCTOHYMBOCTH M HEYCTOMYHBOCTH PA3BUBAIOLLMXCS B
YUCTON BOJE TeYeHWH BOIU3M BEepTHKAIbHOH NMOBEPXHOCTH I ONHOPOIAHOIO MOTOKA M H30TEPMHHEC-
KHX TpaHMYHBIX ycnoBui. PaccMoTpeH ciyyaid, Korjla MJIOTHOCTb HEMOIABMXKHOM OKpYyXkalolled cpeabl
ABJASETCA JKCTPeMasibHOH, OOGHapyXeHO, 4TO Iaxe OTHOCHTENbHO cilaboe BO3pacTaHHE MIOTHOCTH
nonepex TEMIOBOro CJ105 B XHAKOCTH A0 IKCTPEMAJIBHOIO 3HAYEHMS CHIILHO BJMAET Ha PA3BHTHE YCTOM-
YMBOCTH BOIMYLLEHUI BHU3 O noToky. OOHAKO XapakTep HEYCTOHYHBOCTEH M WX H3OHpaTenbHOE yCuie-
HHME KAYECTBEHHO TAKHKE XKe, KaK U MPH OObIMHBIX yca08HAX. CpaBHEHHE N0JIy4eHHbIX HOBBIX Pe3y1bTATOB
C HelaBHO NMPOBEJCHHBIMHY U3MEPEHUSNMH [10KA3bIBAECT X NPEKPACHOE COTIACHUE.



